Water Contamination Reduces the Tolerance of Coral Larvae to Thermal Stress

نویسندگان

  • Andrew P. Negri
  • Mia O. Hoogenboom
چکیده

Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST) posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination) and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude loca...

متن کامل

Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations.

Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adap...

متن کامل

Temperature Dependence of Respiration in Larvae and Adult Colonies of the Corals Acropora tenuis and Pocillopora damicornis

Although algal symbionts can become a source of reactive oxygen species under stressful conditions, symbiotic planulae of the coral Pocillopora damicornis are highly tolerant to thermal stress compared with non-symbiotic planulae of Acropora tenuis. As a first step to understand how P. damicornis planulae attain high stress tolerance, we compared the respiration rate and temperature dependence ...

متن کامل

Spatial and temporal distribution of larvae of coral reef fishes in northern Red Sea, Egypt

The larval community of coral reef fishes in the Red Sea was studied in coastal and offshore sites to determine the effects of the exposure to waves and currents and the distance from the shore in structuring the larval fish community. Plankton sampling from inshore and offshore sites and the exposed and sheltered sides of the reefs resulted in the collection of 2048 larvae representing 49 diff...

متن کامل

Nearshore Turbid-Zone Corals Exhibit High Bleaching Tolerance on the Great Barrier Reef Following the 2016 Ocean Warming Event

High sea surface temperatures (SSTs) on the Great Barrier Reef (GBR) during summer 2015/2016 caused extensive coral bleaching, with aerial and in-water surveys confirming high (but variable) bleaching-related coral mortality. In contrast, bleaching impacts on nearshore turbid-zone reefs, traditionally considered more “marginal” coral habitats, remain poorly documented. This is because rapid eco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011